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Non-Hermiticity in a kicked model: Decoherence and the semiclassical limit
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We study the effects of non-Hermitian perturbations on a quantum kicked model exhibiting a localization
transition. Using an exact renormalization scheme, we show that the critical line separating the extended and
localized phases approaches its semiclassical limit as the imaginary part of the kicking parameter is steadily
increased. Further, the metastability of the quantum states appears to be directly correlated with the deviation
between the semiclassical and quantum results. This direct evidence of quantum-classical correspondence
suggests that decoherence may be usefully modeled by non-Hermitian perturbations.
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Decoherence, namely, the loss of quantum cohere
through perturbations from environmental degrees of fr
dom is one of the most exciting and active area of researc
the forefront of physics. In addition to its importance at tec
nological fronts such as quantum computing@1#, the subject
is crucial to the field of quantum chaos. It is argued th
decoherence is essential in establishing the correspond
principle for quantum systems with classically chaotic lim
@2#. The subject has created theoretical and experime
challenges in modeling and controlling the interaction
quantum systems with the environment.

There are recent suggestions that decoherence and
pation may be modeled as non-Hermitian perturbations@3#.
At the same time, there has been a considerable amou
interest in delocalization effects in non-Hermitian system
although these have not considered the connection to d
herence at all. These studies were triggered by the resul@4#
that a complex vector potential delocalizes the wave fu
tions that are otherwise localized in a random potential. T
is reminiscent of the delocalization due to decoherence
dynamical localization in quantum systems with classica
chaotic dynamics@5#. In this paper, we argue that effects
non-Hermiticity may be understood as a special case of
general effect of quantum properties being destroyed by
coherence. Among other interesting questions, this open
the issue of characterizing the transition from quantum
classical properties as a function of the strength of the c
plex perturbation.

Earlier studies relating non-Hermitian perturbations a
delocalization were confined to the complex vector potent
The non-Hermitian vector potential was argued to be intr
sically different from non-Hermitian scalar potentials@6# in
that the imaginary vector potential singles out a direction
space, breaking the symmetry between the left- and the ri
moving particles, while the imaginary scalar potential can
understood as singling out a direction in time. However,
results indicate that transport characteristics arein general
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affected by non-Hermiticityirrespectiveof where the non-
Hermitian terms appear. This line of reasoning emerged fr
a recent study of non-Hermitian lattice models exhibiting
localization-delocalization transition@7#. There, the non-
Hermitian scalar and vector potentials correspond to the n
Hermitian diagonal and off-diagonal perturbations that
related by a Fourier transformation. That is, the effects
spatial localization due to the complex vector perturbat
correspond to the effects on momentum space localiza
due to the scalar term. In particular, it was found that fo
complex vector potential, the extended phase is accompa
by complex eigenenergies~as found earlier@4#! while for the
complex scalar potential the same was true for the locali
states. Thus, the main issue is the non-Hermiticity its
rather than its source in the vector or the scalar poten
This perspective specifically interprets non-Hermitian ter
via their effects as decohering perturbations. In the follo
ing, we study a nonautonomous system, with non-Hermit
kicking, exhibiting a localization-delocalization transitio
Using a renormalization group~RG! technique, we study the
effects of non-Hermiticity on this transition. We show expli
itly that as the non-Hermitian perturbation is increased,
system’s localization-delocalization phase diagram mo
tonically approaches the semiclassically determined diagr

Periodically kicked Hamiltonian systems such as

H5T~p!1V~x!( d~ t2n!, ~1!

with sinusoidally periodicV(x) andT(p)5p2/2 ~kicked ro-
tor! or T(p)5Lcos(p) ~kicked Harper!, are an important
class of theoretical and experimental systems for study
the quantum dynamics of classically nonintegrable syste
@8#. Despite extensive study for almost two decades, qu
tions of classical-quantum correspondence and dynamica
calization in these systems remain open. When the quas
ergy states of the system are projected on the ang
momentum basis, these models map onto lattice models@9#.
However, in contrast to the lattice models for autonomo
systems, kicked systems yield long-range interactions
hence are more difficult to study. A special class of kick
©2002 The American Physical Society05-1



en

e
ith
e

th

o
tic

a
en
ia

i-
tu
al
a
s
te

-
tio
-
m

he
f

al
t’
ct

m
n-

or

e
the
e

-

re,

a
by
er.

mer
er.
ef-

tio
or-

t

r-
-

ion,

, the

ak,

The

RAPID COMMUNICATIONS

INDUBALA I. SATIJA AND ARJENDU K. PATTANAYAK PHYSICAL REVIEW E 65 045205~R!
models withV(x)52\arctan@K̄ cos(x)# are useful@9,10# as
they can be represented by a nearest-neighbor~NN! tight-
binding model~tbm! of the form

cm111cm211
2

K̄
tanFT~\m!

2\
2

v

2 Gcm50, ~2!

wherev is the quasienergy. Here the lattice indexm repre-
sents the angular momentum quantum number in the abs
of the kicking term.

With T(p)5p2/2, this model resembles a lattice mod
with a pseudorandom potential exhibiting localization w
the localization length equal to that of the Lloyd mod
@9,10#. We study the model withT(p)5L cos(p), which ex-
hibits both extended and localized phases@13# for irrational
\/2p. The system also describes the NN truncation of
kicked Harper model, and for smallK̄ and L̄[L/2\, it re-
duces to the Harper equation@11# with E5v. This model is
thus a good testing ground for investigating the effects
non-Hermitian perturbations on the transport characteris
of nonautonomous systems.

Although this model has no nontrivial classical limit,
nontrivial semiclassical limit does exist. The lattice repres
tation of the model can be written as a quantum Hamilton
@12–14# H5K̄ cos(P)1tan@ L̄ cos(X)2v/2)] restricted to the
Hilbert subspace defined by eigenvalueE50 where X
5\m and @X,P#5 i\. This Hamiltonian, interpreted class
cally, has orbits in phase space, which may carry a signa
of the localization-delocalization transition for the origin
lattice model. For the Harper equation, which describes
autonomous system, unbounded phase-space trajectorie
KÞL are found to correspond to extended or localized sta
while a bounded orbit atK5L describes the localization
delocalization boundary. Here the semiclassical predic
for the critical point isexact. For the kicked system dis
cussed above, it is easy to show that the semiclassical Ha
tonian has bounded orbits providedK̄5tan(L̄), independent
of v. This is, therefore, the semiclassical condition for t
critical line separating the extended and localized states
the model in Eq.~2!. We show below that this semiclassic
critical line is a reasonable approximation to the ‘‘exac
quantum critical line, and for complex kicking, the exa
critical line tends toward this semiclassical line.

The quantum phase diagram inK̄2L̄ space is studied
using a RG approach for a fixed quasienergy. We use di
decimation@15,16# that has conceptual and intuitive adva
tages over other RG schemes@17,18#. The key idea underly-
ing the renormalization scheme is thesimultaneousdecima-
tion of the two central sites of the doubly infinite lattice
2`, . . . ,22,21,0,1,2, . . . ,̀ , in the tbm, after we have
eliminated the central sitem50. At the nth step where
all sites with umu,n have been decimated, the tbm f
m56n reads

Fn111G1~n!F2n2E2~n!Fn50, ~3!

F2n211G2~n!Fn2E1~n!F2n50, ~4!
04520
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whereGx(n) and Ex(n) (x56), respectively, describe th
renormalized coupling and the on-site potential term at
nth step of the renormalization. The initial values of th
couplings are obtained from Eq.~2! after decimating the cen
tral site @15,16#. The 1(2) correspond to the right~left!
parts of the lattice. In the model under investigation he
G25G1 and E25E1 due to m→2m symmetry. The
renormalized parameters are given by theexactRG flow @15#

Mn115fn111Mn
21 , ~5!

whereM is a 232 matrix,

M5S E2 G2

G1 E1 D , ~6!

and f is a diagonal matrix, with elementsE21 andE1. As-
ymptotically, the renormalized lattice can be viewed as
dimer where the transport characteristics are determined
the quantum interference between the two sites of the dim
Interestingly, the extended phase resembles a rigid di
while the localized phase is asymptotically a broken dim
Therefore, the transport properties are described by the
fective coupling of the renormalized dimer, which is the ra
between the offdiagonal and the diagonal part of the ren
malized tbm R(n)5GG†/EE†. The scaling exponentb
5 lim

n→`
ln R(n)/ln n effectively quantifies the transpor

properties, since extended states are described by~typically
monotonic! convergence ofb(n) →0. For exponential local-
ization, b(n)→2`. In contrast, the critical states are cha
acterized by negativeb and nonconvergent, oscillatory be
havior.

Figure 1 shows the results, at almost machine precis
of this method applied to Eq.~2! for v50. The important
feature to note is that as the kicking parameter increases
diagram has a narrow reentrant phase~a peak! and a plateau.
Interestingly, with the exception of the region near this pe

FIG. 1. Phase diagram for the kicked model with\/2p5(A5
21)/2 andv50. The shaded regime is the extended phase.
solid line is the semiclassical critical line.
5-2
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the phase diagram is more or less consistent with the s
classical prediction. Further, Fig. 2 shows the transport c
acteristics for wave packets in this system, and this glo
phase diagram closely resembles Fig. 1, which is for a p
quantum state. This is important, since RG tools to comp
the phase diagram forv50 require a small fraction of the
computational time for computing the wave packet transp
characteristics.

In Fig. 3, we show the effects of a complex perturbatio
K̄→K̄r1 iK̄ i , on the phase diagram. The focus is on t

FIG. 2. Transport properties of a quantum wave packet. Usin
plane wave initial condition, we compute^p2& after 1000 kicks. The
lightly shaded regime shows the parameter space where^p2& is
greater than 104. The darker regime indicates that^p2& is between
103–104. The narrowness of this regime confirms that the com
tation is converging accurately to the localization boundary.

FIG. 3. The effects of complex perturbation on the critical lin

The parameterK̄ is the absolute value of the complex kicking. Th

lines from top to bottom correspond toK̄ i50,K̄ i50.1,K̄ i50.5,K̄ i

51, and finally with K̄r50, respectively. The crosses show t
semiclassical critical line.
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changes in the critical line asK̄ i is increased. What is inter
esting is the manner in which the transition curve mov
towards the semiclassical critical line as the non-Hermitic
of the perturbation is increased. The transition appears
happen in distinct stages:~a! the peak diminishes and the
disappears,~b! the curve gets closer in shape to the semicl
sical line while still maintaining a difference, and finally,~c!

when the real part ofK̄ is switched off, the curve is almos
exactly on top of the semiclassical line. Also, note that
effects of non-Hermiticity are consistent with the earli
work @4#, since the non-Hermitian perturbation shifts th
critical line in parameter space so as to increase the mea
of parameter space corresponding to dynamical localiza
~for p or m in momentum space!, and hence enhance th
parameter space corresponding to delocalization in
space.

The RG approach was also used to study the effects
non-Hermiticity on the quasienergy spectrum@16#. It turns
out that all quasienergies are in general complex@19#. Figure
4 shows the part of the spectrum with zero real part, i.e.,
pure imaginary part of the eigenvalues. Analogous to
Bloch states~of a Hermitian model!, the pure imaginary ei-
genvalues exhibit aband structure. It should be noted tha
we show only theextendedstates—these are easy to compu
using the RG analysis@16#. As a result of the non-
Hermiticity, the v50 state has continuum families of life
times. Looking at this data, as we approach the localizati
delocalization boundary, this band splits into subbands w
the notable localization of thev i50 band at the onset o
localization as confirmed by further simulations. The fa
that the localization threshold is signaled by thev i50 band
degenerating to a point, whence the state is localized w

a

-

.

FIG. 4. The pure imaginary eigenvalues forK̄r50 as the local-

ization transition is approached, forK̄ i51.5 ~top! andK̄ i52.5 ~bot-
tom!. The figure shows only the extended states withuv i u,3; the
spectrum is symmetric aboutv i50. A comparison between the to
and the bottom figures shows that the peak part of the phase
gram is associated with shorter lifetimes and hence is more
stable.
5-3
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both the real and imaginary part of the spectrum being po
like, is valid for other values of parameter as well.

An intriguing feature of this pure imaginary part of th
spectrum is the presence of relatively large values ofv i in
the parameter regime for thepeakof the phase diagram in
Fig. 1. The results shown in Fig. 4 suggest that this reg
where we also have extended states, is more unstable
the rest of the delocalized phase. This part of the param
space corresponds to a greater deviation between the q
tum and the semiclassical behaviors. As such, this imp
that the v50 quantum state is associated with relative
short lifetimes~is more unstable! when the system is in tha
part of parameter space that isnot described semiclassically
This is consistent with the prediction from the decohere
literature, and the statement that the part of the phase
gram which is not described by the semiclassical theor
most sensitive to the non-Hermitian perturbation is argua
general.

Previous work has indicated that complex Hamiltonia
may be associated with decoherence effects@3,20,21#. The
y
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signature of decoherence is that the quantum system beh
increasingly classically as the decoherence parameter is
creased, independent of the value of\. Decoherence is in
fact argued to be necessary for quantum-classical corres
dence in chaotic systems@2,22#. Our results are consisten
with this, showing that results from decoherence may
used to understand complex Hamiltonians, and alternativ
that a complex Hamiltonian formulation may be used
model decoherence effects. This opens new possibilitie
modeling the interaction between nonintegrable systems
the environment, providing a simpler alternative to solvi
master equations@23#. We hope that our study will stimulate
further exploration of non-Hermitian systems, and partic
larly of those displaying chaos.
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