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Non-Hermiticity in a kicked model: Decoherence and the semiclassical limit
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We study the effects of non-Hermitian perturbations on a quantum kicked model exhibiting a localization
transition. Using an exact renormalization scheme, we show that the critical line separating the extended and
localized phases approaches its semiclassical limit as the imaginary part of the kicking parameter is steadily
increased. Further, the metastability of the quantum states appears to be directly correlated with the deviation
between the semiclassical and quantum results. This direct evidence of quantum-classical correspondence
suggests that decoherence may be usefully modeled by non-Hermitian perturbations.
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Decoherence, namely, the loss of quantum coherencaffected by non-Hermiticityirrespectiveof where the non-
through perturbations from environmental degrees of freeHermitian terms appear. This line of reasoning emerged from
dom is one of the most exciting and active area of research & recent study of non-Hermitian lattice models exhibiting a
the forefront of physics. In addition to its importance at tech-localization-delocalization transitiofi7]. There, the non-
nological fronts such as quantum computfig, the subject Hermitian scalar and vector potentials correspond to the non-
is crucial to the field of quantum chaos. It is argued thatHermitian diagonal and off-diagonal perturbations that are
decoherence is essential in establishing the correspondent@lated by a Fourier transformation. That is, the effects on
principle for quantum systems with classically chaotic limits SPatial localization due to the complex vector perturbation
[2]. The subject has created theoretical and experiment&gorrespond to the effects on momentum space localization
Cha”enges in mode“ng and Contro”ing the interaction Ofdue to the scalar term. In particular, it was found that for a
guantum systems with the environment. complex vector potential, the extended phase is accompanied

There are recent suggestions that decoherence and disBY complex eigenenergigas found earlief4]) while for the
pation may be modeled as non-Hermitian perturbati@s complex scalar potential the same was true for the localized
At the same time, there has been a considerable amount &fates. Thus, the main issue is the non-Hermiticity itself
interest in delocalization effects in non-Hermitian systems'ather than its source in the vector or the scalar potential.
although these have not considered the connection to decdhis perspective specifically interprets non-Hermitian terms
herence at all. These studies were triggered by the rm}“t YIa the|r effeCtS as deCOheI’Ing perturbatlor.ls. In the fO||OW—
that a complex vector potential delocalizes the wave funcind, we study a nonautonomous system, with non-Hermitian
tions that are otherwise localized in a random potential. Thikicking, exhibiting a localization-delocalization  transition.
is reminiscent of the delocalization due to decoherence of/Sing a renormalization groufRG) technique, we study the
dynamical localization in quantum systems with classicallyeffects of non-Hermiticity on this transition. We show explic-
chaotic dynam|c$5:| In this paper, we argue that effects of |t|y that as the_nOI.’]—Hel'mltlar? pe.rturbatlon IS !aneased, the
non-Hermiticity may be understood as a special case of theystem's localization-delocalization phase diagram mono-
general effect of quantum properties being destroyed by ddonically approaches the semiclassically determined diagram.
coherence. Among other interesting questions, this opens up Periodically kicked Hamiltonian systems such as
the issue of characterizing the transition from quantum to
classical properties as a function of the strength of the com- _ B
plex perturbation. H=T(p)+ V002 a(t=n), @

Earlier studies relating non-Hermitian perturbations and
delocalization were confined to the complex vector potentialwith sinusoidally periodid/(x) and T(p)=p?/2 (kicked ro-

The non-Hermitian vector potential was argued to be intrintor) or T(p)=Lcosfp) (kicked Harpey, are an important
sically different from non-Hermitian scalar potentigfy in  class of theoretical and experimental systems for studying
that the imaginary vector potential singles out a direction inthe quantum dynamics of classically nonintegrable systems
space, breaking the symmetry between the left- and the righ{8]. Despite extensive study for almost two decades, ques-
moving particles, while the imaginary scalar potential can beions of classical-quantum correspondence and dynamical lo-
understood as singling out a direction in time. However, ourcalization in these systems remain open. When the quasien-
results indicate that transport characteristics iargeneral  ergy states of the system are projected on the angular
momentum basis, these models map onto lattice md8@g¢ls
However, in contrast to the lattice models for autonomous
*URL: http://physics.gmu.edu/~isatija systems, kicked systems yield long-range interactions and
TURL: http://physics.carleton.edu/Faculty/Arjendu hence are more difficult to study. A special class of kicked
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models withV(x) = 2% arctafik cos)] are useful[9,10] as

they can be represented by a nearest-neiglihidl) tight- 15 B ]
binding model(tbm) of the form L ]
2 T(AM) o - 1

Umi1t Pm-1t ?tan 27 3 |¥m=0, 2 1 - 7

=L J

wherew is the quasienergy. Here the lattice indexepre- L J
sents the angular momentum quantum number in the absence L 4
of the kicking term. 0.5 |- —

With T(p)=p?/2, this model resembles a lattice model r 1
with a pseudorandom potential exhibiting localization with r §
the localization length equal to that of the Lloyd model
[9,10]. We study the model witf (p) =L cosf), which ex- I T TN

hibits both extended and localized pha§&3] for irrational 0 1 2 3 4 5
hl2m. The system also describes the NN truncation of the K
kicked Harper model, and for smefl andL=L/2#, it re- FIG. 1. Phase diagram for the kicked model witt27=(\/5

duces to the Harper equatiphl] with E=w. This modelis  _1)/> angw=0. The shaded regime is the extended phase. The
thus a good testing ground for investigating the effects 0fgjiq jine is the semiclassical critical line.

non-Hermitian perturbations on the transport characteristics

of nonautonomous systems. o ~ whereG¥*(n) andEX(n) (x= =), respectively, describe the
Although this model has no nontrivial classical limit, @ renormalized coupling and the on-site potential term at the

nontrivial semiclassical limit does exist. The lattice represeny, i step of the renormalization. The initial values of the

tation of the model can be_vvritten as a quantum Hamiltoniaq:c)up”ngs are obtained from E¢p) after decimating the cen-

[12—14 H=K cosP)-+tar{ L cos(X)—w/2)] restricted to the tral site [15,16. The +(—) correspond to the rightleft)

Hilbert subspace defined by eigenvalie=0 where X  parts of the lattice. In the model under investigation here,

=fm and[X,P]=i%. This Hamiltonian, interpreted classi- G"=G"* and E"=E" due to m——m symmetry. The

cally, has orbits in phase space, which may carry a signaturenormalized parameters are given by éxactRG flow[15]

of the localization-delocalization transition for the original

lattice model. For the Harper equation, which describes an Mpr1=frit M1, (5)

autonomous system, unbounded phase-space trajectories for

K#L are found to correspond to extended or localized statewhereM is a 2X2 matrix,

while a bounded orbit aK=L describes the localization-

delocalization boundary. Here the semiclassical prediction E- G~

for the critical point isexact For the kicked system dis- M= Gt E'/

cussed above, it is easy to show that the semiclassical Hamil-

tonian has bounded orbits provid&d=tan(L), independent andf is a diagonal matrix, with elemens ! andE™". As-
of w. This is, therefore, the semiclassical condition for theymptotically, the renormalized lattice can be viewed as a
critical line separating the extended and localized states fadimer where the transport characteristics are determined by
the model in Eq(2). We show below that this semiclassical the quantum interference between the two sites of the dimer.
critical line is a reasonable approximation to the “exact” Interestingly, the extended phase resembles a rigid dimer
quantum critical line, and for complex kicking, the exactwhile the localized phase is asymptotically a broken dimer.
critical line tends toward this semiclassical line. Therefore, the transport properties are described by the ef-
The quantum phase diagram K—L space is studied fective coupling of the renormalized dimer, which is the ratio
using a RG approach for a fixed quasienergy. We use dimd¥etween the offdiagonal and the diagonal part of the renor-
decimation[15,16] that has conceptual and intuitive advan- malized tom R(n)=GG'/EE". The scaling exponenB
tages over other RG schemld¥,18. The key idea underly- =lim___InR(n)/inn effectively quantifies the transport

ing the renormalization scheme is thinultaneouslecima-  properties, since extended states are describedybically
tion of the two central sites of the doubly infinite lattice monotonig convergence oB(n) — 0. For exponential local-
—%,...,-2,-1,012... %, in the tbm, after we have jzaiion, g(n)— —c. In contrast, the critical states are char-

eliminated the central siten=0. At the nth step where gcterized by negativg and nonconvergent, oscillatory be-
all sites with [m|<n have been decimated, the tbm for hayior.

(6)

m=*n reads Figure 1 shows the results, at almost machine precision,
of this method applied to Eq2) for @=0. The important
@, 1, +G (N)®_,—E (n)®,=0, (3)  feature to note is that as the kicking parameter increases, the
diagram has a narrow reentrant phés@eal and a plateau.
®_, ,+G (n®,—E"(n)®_,=0, (4) Interestingly, with the exception of the region near this peak,
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FIG. 2. Transport properties of a quantum wave packet. Using a
plane wave initial condition, we computg?) after 1000 kicks. The FIG. 4. The pure imaginary eigenvalues #r=0 as the local-
lightly shaded regime shows the p_ara_lmeter space whete is ization transition is approached, fEri=1.5(t0p) andE=2.5(bot-
greater than 10 The darker regime indicates thigi?) is between tom). The figure shows only the extended states it{]<3; the
10?_1(.)4' The narrowness of this regime C(.)nﬁr.ms that the Compu'spectrum is symmetric about;=0. A comparison between the top
tation is converging accurately to the localization boundary. and the bottom figures shows that the peak part of the phase dia-

gram is associated with shorter lifetimes and hence is more un-

the phase diagram is more or less consistent with the semstable.
classical prediction. Further, Fig. 2 shows the transport char-

acteristics for wave packets in this system, and this globathanges in the critical line as; is increased. What is inter-
phase diagram closely resembles Fig. 1, which is for a purgsting is the manner in which the transition curve moves
quantum state. This is important, since RG tools to computgowards the semiclassical critical line as the non-Hermiticity
the phase diagram fap=0 require a small fraction of the of the perturbation is increased. The transition appears to
computational time for computing the wave packet transporhappen in distinct stage¢a) the peak diminishes and then

characteristics. _disappears(b) the curve gets closer in shape to the semiclas-
__InFig. 3, we show the effects of a complex perturbation,sica| line while still maintaining a difference, and finallg)

K—K,+iK;, on the phase diagram. The focus is on theyhen the real part oK is switched off, the curve is almost
exactly on top of the semiclassical line. Also, note that the
2 T effects of non-Hermiticity are consistent with the earlier
work [4], since the non-Hermitian perturbation shifts the
critical line in parameter space so as to increase the measure
of parameter space corresponding to dynamical localization
(for p or m in momentum spage and hence enhance the
parameter space corresponding to delocalization in real
space.
The RG approach was also used to study the effects of
non-Hermiticity on the quasienergy spectrii6]. It turns
out that all quasienergies are in general compled. Figure
4 shows the part of the spectrum with zero real part, i.e., the
pure imaginary part of the eigenvalues. Analogous to the
Bloch stateqof a Hermitian mode| the pure imaginary ei-
genvalues exhibit d@and structure It should be noted that
il e we show only theextendedtates—these are easy to compute
0 1 o 3 4 using the RG analysi§16]. As a result of the non-
K Hermiticity, the w=0 state has continuum families of life-
times. Looking at this data, as we approach the localization-
FIG. 3. The_ef'fects of complex perturbation on the critical line. ge|ocalization boundary, this band splits into subbands with
The parameteK is the absolute value of the complex kicking. The the notable localization of the;=0 band at the onset of
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(9]

lines from top to bottom correspond #,=0K;=0.1K;=05K; localization as confirmed by further simulations. The fact
=1, and finally withK,=0, respectively. The crosses show the that the localization threshold is signaled by the=0 band
semiclassical critical line. degenerating to a point, whence the state is localized with
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both the real and imaginary part of the spectrum being pointsignature of decoherence is that the quantum system behaves
like, is valid for other values of parameter as well. increasingly classically as the decoherence parameter is in-
An intriguing feature of this pure imaginary part of the creased, independent of the valueof Decoherence is in
spectrum is the presence of relatively large valuespfn  fact argued to be necessary for quantum-classical correspon-
the parameter regime for thgeakof the phase diagram in dence in chaotic systenj®,22). Our results are consistent
Fig. 1. The results shown in Fig. 4 suggest that this regionwith this, showing that results from decoherence may be
where we also have extended states, is more unstable thaged to understand complex Hamiltonians, and alternatively,
the rest of the delocalized phase. This part of the parametehat a complex Hamiltonian formulation may be used to
space corresponds to a greater deviation between the quamodel decoherence effects. This opens new possibilities in
tum and the semiclassical behaviors. As such, this impliesnodeling the interaction between nonintegrable systems and
that the w=0 quantum state is associated with relativelythe environment, providing a simpler alternative to solving
short lifetimes(is more unstablewhen the system is in that master equation23]. We hope that our study will stimulate
part of parameter space thatriet described semiclassically. further exploration of non-Hermitian systems, and particu-
This is consistent with the prediction from the decoherencéarly of those displaying chaos.
literature, and the statement that the part of the phase dia-
gram which is not described by the semiclassical theory is
most sensitive to the non-Hermitian perturbation is arguably We thank Tomaz Prosen and Nausheen Shah for their as-
general. sistance in certain aspects of the work. The research of I.I.S.
Previous work has indicated that complex Hamiltonianswas supported by a grant from the National Science Founda-
may be associated with decoherence eff¢8t20,21. The tion (Grant No. DMR 0072813
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